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Abstract
We consider the clustering of observations of a Hidden Markov Model (HMM)

comprised of two hidden states and discrete emissions. Clustering amounts

to the reconstruction of the hidden states using the observations by minimizing

(in average) the number of misclassified observations. Both online and offline

clustering are studied.

• We show that the empirical plug-in Bayes classifier using consistent estimators

of the model parameters is efficient in the sense that its risk is equivalent to the

Bayes risk for large samples.

• We identify the asymptotic Bayes risk using some forgetting properties of

Markov Chains.

• We exhibit upper and lower bounds on the asymptotic Bayes risk using the

model parameters.

Motivation
• Clustering is usually applied to heterogeneous data coming from different populations.

These are usually modeled by a mixture model. However, without any additional

assumption, these models are not identifiable. Inference on parameters and

clustering become impossible.

• Assuming in addition that the data is derived from a HMM the model becomes

identifiable and inference and clustering algorithms can be used as in [2].

Mathematical setting
• The hidden states (Xk)k∈N are assumed to form a Markov chain.

• The observations (Yk)k∈N are independent conditionally on the hidden states

and Yk | Xk = j ∼ fj.

• The Markov chain (Xk)k∈N will be assumed to have two hidden states, initial

distribution ν and transition matrix:

Q =

(

1− p p

q 1− q

)

Markov process : X0 X1 X2 · · · XT−1

Observations : Y0 Y1 Y2 · · · YT−1

Figure 1: A hidden Markov model.

Offline vs online frameworks
Denote θ = (ν,Q, f0, f1) and consider the loss function L(x1:n,x

′
1:n) =

1
n

∑n
k=1 1xk 6=x′

k
.

We study the risk of clustering observations in two frameworks:

• Offline: All observations are used in the classification procedures. Classifiers

are of the form: h(Y1:n) = (hk(Y1:n))1≤k≤n.

- Offline risk: ROffline
n,HMM(h) = Eθ

[

1
n

∑n
k=1 1Xk 6=hk(Y1:n)

]

- Offline Bayes risk: R
⋆,Offline
n,HMM

= Eθ[
1
n

∑n
k=1minx=0,1 Pθ (Xk 6= x | Y1:n)]

• Online: Classification can use only past observations. Classifiers are of the

from: h(Y0:n−1) = (hk(Y0:k−1))1≤k≤n

- Online risk: ROnline
n,HMM(h) = Eθ

[

1
n

∑n
k=1 1Xk 6=(hk(Y0:k−1))

]

- Online Bayes risk: R
⋆,Online
n,HMM

= Eθ[
1
n

∑n
k=1minx=0,1 Pθ (Xk 6= x | Y0:k−1)]

Efficiency of plug-in empirical Bayes classifier

Theorem 1 Assume:

• The initial distribution ν is the stationary distribution.

• δ = mini,jQi,j > 0

• (f0(y), f1(y)) = (p
y
0(1− p0)

1−y,p
y
1(1− p1)

1−y)

• c⋆ = min(p0,p1,1− p0,1− p1) > 0.

Then:

ROffline
n,HMM(ĥ)−R

⋆,Offline
n,HMM

≤
4(1− δ)

δ2
Eθ

[

1

n(1− ρ)
‖ν − ν̂‖2 +

(

1/(1− ρ)

+1/(1− ρ̂)
)

(

‖Q− Q̂‖F +
2

c⋆
max
x=0,1

|px − p̂x|

)

]

ROnline
n,HMM(ĥ)−R

⋆,Online
n,HMM

≤
8(1− δ)

δ2
Eθ

[

1

n(1− ρ)
‖ν − ν̂‖2 +

(

1/(1− ρ)

+1/(1− ρ̂)
)

(

‖Q− Q̂‖F +
1

c⋆
max
x=0,1

|px − p̂x|

)

]

+2Eθ

[

‖Q− Q̂‖F

]

where ρ = 1−2δ
1−δ , ρ̂ = 1−2δ̂

1−δ̂
, δ̂ = mini,j Q̂i,j > 0 and ĥ is the empirical Bayes

classifier using estimates of the model parameters θ̂ = (ν̂, Q̂, p̂0, p̂1).

• Note that there is no need for consistent estimators of the initial distribution.

• Existence of consistent estimators of (Q, f0, f1) is ensured (cf. [1]).

−→ Plugging-in consistent estimators of the model parameters is thus an efficient

procedure.

Define the following two quantities:

R
⋆,Offline
∞,HMM

= Eθ[min(Pθ(X0 = 1 | Y−∞:+∞),Pθ(X0 = 0 | Y−∞:+∞))]

R
⋆,Online
∞,HMM

= Eθ[min(Pθ(X1 = 1 | Y−∞:0),Pθ(X1 = 0 | Y−∞:0))]

Theorem 2 Under the same assumptions:

∣

∣

∣
R

⋆,Offline
n,HMM

−R
⋆,Offline
∞,HMM

∣

∣

∣
≤

2

n(1− ρ0)
∣

∣

∣
R

⋆,Online
n,HMM

−R
⋆,Online
∞,HMM

∣

∣

∣
≤

ρ1
2n

1

1− ρ0

where ρ0 = 1−2δ
1−δ , ρ1 = 1− 2δ and δ = mini,jQi,j > 0.

Bounds on the asymptotic Bayes risk
We introduce the following parametrization :

φ(θ) =

(

q− p

q + p
, 1− p− q, ‖f0 − f1‖∞

)

Theorem 3 - The asymptotic Bayes risk for online clustering verifies:

R
⋆,Online
∞,HMM

≤
1

2
−

|φ1|

2

- Assuming in addition that min (f0, f1) ≥ c and that |φ2| ≤
c
12 ∧ c2

4 , then one

has:

R
⋆,Online
∞,HMM

≥
1

2
−

|φ1|

2
−

(1− φ21)φ
2
2φ3

2c

Note that the upper bound 1
2 −

|φ1|
2 corresponds to the Bayes risk reached by the

majority class classifier.

Conclusion and future directions
This work clarifies some features of the asymptotic behavior of the Bayes risk and

empirical estimation procedures. However, some aspects still need to be studied:

• Extension of the results to the nonparametric setting.

• Bounds on the asymptotic Bayes risk in the offline framework.

• Matching the upper and lower bounds in order to understand how much

better is the HMM Bayes classifier compared to majority class classifier.
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