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Problem
Clustering observations of a Hidden Markov Model where the emission distributions

are non-parametric. The purpose is to understand the dependence of the Bayes risk

of clustering with respect to the separation between the emission distributions, the

transition matrix of the hidden states being fixed.

Goal:

1. Identify the appropriate notion of separation between the emission distributions

which measures the difficulty of the problem of clustering.

2. Given a specified level on the risk of clustering, what is the required separation

to ensure the Bayes risk of clustering is smaller than the pre-specified threshold?

3. Construct an optimal clustering procedure

Motivation and prior work
Clustering is usually applied to heterogeneous data coming from different populations.

Usually, they are modeled by a mixture model. However, without any additional

assumption, this model is not identifiable. Inference of the HMM parameters and

clustering are not possible. However, when the data are derived from a HMM,

the model becomes identifiable [3] and estimation of the mixture components at

optimal rates is possible [1].

Mathematical setting
• The hidden states (Xk)k∈N are assumed to form a Markov chain with J hidden

states, initial distribution ν and transition matrix Q.

• The observations (Yk)k∈N are independent conditionally to the hidden states

and Yk | Xk = j ∼ Fj.
(

Fj
)

1≤j≤J
are called emission distributions.

• θ =
(

ν,Q, (Fj)1≤j≤J

)

will denote the model parameters and SJ the set of

permutations of {1, ..., J}.

Markov process : X1 X2 X3 · · · Xn

Observations : Y1 Y2 Y3 · · · Yn

Figure 1: A hidden Markov model.

A classifier is of the form: h(Y1:n) = (hi(Y1:n))1≤i≤n. The associated risk of

classification is:

Rclass
n (θ, h) := Eθ

[

1

n

n
∑

i=1
hi(Y1:n) 6=Xi

]

.

Unlike classification, clustering seeks only to identify the clusters or the partitions,

but not the associated labels. To each classifier h is associated a clustering procedure

g which seeks to infer only the partition, not the labels of the classes themselves:

g(Y1:n) = {{i : hi(Y1:n) = x} : x ∈ X}\{∅}

The associated risk of clustering can then be defined by:

Rclust
n (θ, g) := Eθ



 inf
τ∈SJ

1

n

n
∑

i=1
τ (Xi) 6=hi(Y1:n)





Quantifying the Bayes risk of clustering

Theorem 1 Assume δ = mini,j Qi,j > 0. Then:

- If J = 2, then for all n ≥ 1 and all θ:

inf
g
Rclust

n (θ, g) ≥

[

1− c1

√

log(J)

2n

]

inf
h
Rclass

n (θ, h)

- If J ≥ 3, then for all n ≥ 1 and all θ:

inf
g
Rclust

n (θ, g) ≥

[

1− c2

√

log(J !)

2n

]

inf
h
Rclass

n (θ, h)− (J2 + 1)e−c3n

where c1, c2 and c3 are positive constants depending only on ν and Q.

• Complete equivalence between the two risks for n large enough when the HMM

is comprised on only two hidden states.

• One can show that the equivalence does not hold in all generality.

• Since the Bayes risk of classification (smallest risk) has a closed formula:

inf
h
Rclass

n (θ, h) =
1

n

n
∑

i=1

Eθ

[

min
1≤j≤J

Pθ (Xi 6= j | Y1:n)

]

it is easier to study than the Bayes risk of clustering. Thanks to some recursive

formulas [2] ensured by the distributions (Pθ (Xi ∈ . | Y1:n))1≤i≤n, we prove that

the difficulty of the problem of clustering HMM observations is driven by:

Λ =

∫

min
1≤j≤J





∑

i 6=j

Fi





Theorem 2 If δ = mini,j Qi,j > 0 and Λ ≥ βe−c3n:

αΛ ≤ inf
g
Rclust

n (θ, g) ≤ Λ

where α and β are positive constants depending only on ν, Q and J .

Optimality of plugin procedure
We consider now the plugin procedure defined by:

h
θ̂
(Y1:n) =

(

arg max
1≤j≤J

P
θ̂(Y1:n)

(Xi = j | Y1:n)

)

1≤i≤n

Theorem 3 Assume the transition matrix is ergodic, the emission densities are

linearly independent and Hölder smooth. Then, the plugin procedure ensures:

Rclust
n (θ, g

θ̂
)− inf

g
Rclust

n (θ, g) = O

(

(

log(n)

n

) s
2s+1

)

Numerical simulations
Consider the following example: A sample of size n = 5.104 is generated from two

Gaussian mixtures :12 (N (1.7, 0.2) +N (7, 0.15)) and 1
2 (N (3.5, 0.2) +N (5, 0.4))

with a stationary hidden chain generated by: Q =

(

0.8 0.2
0.3 0.7

)

.

Figure 2: Histograms of clustering results for plugin (top) and k-means (bottom)

Bayes classifier Plug-in classifier k-means algorithm Λ
1.56% 1.61% 46.7% 0.046

Table 1: Errors of clustering for three clustering procedures

Conclusion
1. Non-parametric Hidden Markov Models are capable of handling model-based

clustering without any specification of clusters distributions.

2. Unlike clustering algorithms which are purely geometric (such as k-means and

its variants), plugin procedures exploit the distribution of the observations and

are particularly well-suited to model-based clustering.

3. The measure of separation Λ allows a clear understanding of the difficulty of

the task of clustering with respect to the emission distributions.
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