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Clustering and Hidden Markov Models

Clustering

Clustering is an ill-posed problem which aims to find out interesting
structures in the data or to derive a useful grouping of the observations.
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Clustering and Hidden Markov Models

Applications of clustering

Recommender system in social network
Statistical data analysis
Anomaly detection
Image segmentation and object detection
...
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Clustering and Hidden Markov Models

Model-based clustering: Mixture models

Observations Y = (Yk)1≤k≤n coming from J populations.
Define latent variables X = (Xk)1≤k≤n such that: for each k,

Yk | Xk = j ∼ fj

Then Yk has distribution
J∑

j=1
πj fj

πj : Probability to come from population j

Useful to model data coming from heterogeneous populations.
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Clustering and Hidden Markov Models

Mixture models: Identifiability

Mixture models are not identifiable :
J∑

j=1
πj fj = π1

2 f1 +
(

π1
2 + π2

)( π1
2 f1 + π2f2

π1
2 + π2

)
+

J∑
j=3

πj fj

Learning of population components possible only under additional
structural assumptions such as:

Parametric mixtures
Shape restrictions (gaussian, multinomial, ...)

−→ Might lead to poor results in practice
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Clustering and Hidden Markov Models

Hidden Markov Models and why they are useful

Markov process : X0 X1 X2 · · · XT−1

Observations : Y0 Y1 Y2 · · · YT−1

Figure: A Hidden Markov Model.

Latent (unobserved) variables (Xk)k form a Markov chain.
Observations (Yk)k are independent conditionnally to (Xk)k .

HMMs are identifiable without any shape restriction!
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Inference in HMMs

Outline

1 Clustering and Hidden Markov Models
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3 Clustering: Reconstructing the hidden states

4 Bounds on the Bayes risk

5 Plug-in Bayes classifier
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Inference in HMMs

Inference in Hidden Markov Models

The HMM parameters are:
The initial distribution ν.
The transition matrix Q.
The emission distributions F = (fi)1≤i≤J

Purpose: Estimate the model parameters and the hidden states associated
to the observations.
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Inference in HMMs

Inference in Hidden Markov Models

Many estimators have been studied in the HMM framework:
Kernel estimators
Wavelet estimators
Projection estimators

The associated optimal rates of convergence were derived.
Fundamental limits for learning these models were also identified.
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Clustering: Reconstructing the hidden states
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Clustering: Reconstructing the hidden states

Online vs offline clustering

We study the risk of clustering observations in two frameworks:
Offline: All observations are used in the clustering procedures.
Clustering rules are of the form: h(Y1:n) = (hi(Y1:n))1≤i≤n

Online: Clustering can use only past (and current) observations.
Clustering rules are of the form: h(Y1:n) = (hi(Y1:i))1≤i≤n

For the moment, we focus on the offline case .
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Clustering: Reconstructing the hidden states

First loss function

Consider the loss function:

L1(x ′
1:n, x1:n) = inf

τ∈S

1
n

n∑
k=1

1x ′
k ̸=τ(xk)

The risk associated to a classifier h is:

Rn,HMM(h) = Eθ[L1(h(Y1:n), X1:n)] = Eθ

[
inf
τ∈S

1
n

n∑
i=1

1[h(Y1:n)]i ̸=τ(Xi )

]

Deriving appropriate bounds on this quantity is unclear!
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Clustering: Reconstructing the hidden states

First Loss function
Let’s instead consider:

L1(x ′
1:n, x1:n) = 1

n

n∑
k=1

1x ′
k ̸=xk

The risk associated to a classifier h is:

Rn,HMM(h) = inf
τ∈S

Eθ[L1(h(Y1:n), τ(X1:n))] = inf
τ∈S

Eθ

[
1
n

n∑
i=1

1[h(Y1:n)]i ̸=τ(Xi )

]
Let X = {0, ..., r − 1}. The associated Bayes risk is:

R⋆
n,HMM = 1

n

n∑
i=1

Eθ[min
x∈X

Pθ (Xi ̸= x | Y1:n)]

The Bayes classifier is:

h⋆(Y1:n) =
(

arg max
x∈X

Pθ(Xk = x | Y1:n)
)

1≤k≤n
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Clustering: Reconstructing the hidden states

Reconstruction algorithm

In practice θ is unknown. One rather uses an estimator θ̂ and the
algorithm yields:

ĥ(Y1:n) =
(

arg max
xk∈X

Pθ̂(Xk = xk | Y1:n)
)

1≤k≤n

Algorithm 1: MAP classifier algorithm
Assume X = {0, ..., r − 1}, θ = (ν, Q, F ) is given.;
Using the Forward-Backward algorithm, compute
Pθ(X1 = . | Y1:n), ..,Pθ(Xn = . | Y1:n).;

for k ∈ {1, .., n} do
xk = arg max0≤x≤r−1 Pθ(Xk = x | Y1:n)
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Clustering: Reconstructing the hidden states

Second loss function
Consider the loss function:

L2(x ′
1:n, x1:n) = 1x ′

1:n ̸=x1:n

The risk of clustering associated to a classifier h is:

Rn,HMM(h) = inf
τ∈S

Eθ[L2(h(Y1:n), τ(X1:n))]

The associated Bayes risk is

R⋆
n,HMM = Eθ[ min

x1:n∈Xn
Pθ(X1:n ̸= x1:n | Y1:n)]

The Bayes classifier is then:

h⋆(Y1:n) = arg max
x1:n∈Xn

Pθ(X1:n = x1:n | Y1:n)
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Clustering: Reconstructing the hidden states

Reconstruction algorithm

In practice θ is unknown. One rather uses an estimator θ̂ and seeks the
plug-in Bayes classifier:

ĥ(Y1:n) = arg max
x1:n∈Xn

Pθ̂(X1:n = x1:n | Y1:n)

It can be retrieved by Viterbi algorithm.
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Clustering: Reconstructing the hidden states

Example

Consider the following HMM with the parameters:

Q =
(

0.75 0.25
0.3 0.7

)
, F = (B(0.9), B(0.15)), n = 1000
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Clustering: Reconstructing the hidden states

Example
Below are the observations and the associated states:

Figure: The observations and the associated hidden states. For the observations,
the top vertical lines correspond to observations of 1, the lower ones are
observations of 0
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Clustering: Reconstructing the hidden states

Reconstructions of the hidden states

The following are the reconstructions of the hidden states:
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Bounds on the Bayes risk

Stationarized Bayes risk

Assume the HMM is comprised of 2 hidden states.
Consider the following quantities:

R⋆,Offline
n,HMM = 1

n

n∑
i=1

Eθ [min(Pθ (Xi = 1 | Y1:n) ,Pθ (Xi = 0 | Y1:n))]

R⋆,Offline
stat,HMM = Eθ [min (Pθ (X0 = 1 | Y−∞:+∞) ,Pθ (X0 = 0 | Y−∞:+∞))]

R⋆,Online
n,HMM = 1

n

n∑
i=1

Eθ [min(Pθ (Xi = 1 | Y1:i) ,Pθ (Xi = 0 | Y1:i))]

R⋆,Online
stat,HMM = Eθ [min (Pθ (X1 = 1 | Y−∞:1) ,Pθ (X1 = 0 | Y−∞:1))]
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Bounds on the Bayes risk

Exponential forgetting

Proposition
Assume:

The initial distribution is the stationary distribution
The HMM model is comprised of two hidden states
δ = mini ,j Qi ,j > 0
ρ0 = 1−2δ

1−δ and ρ1 = 1 − 2δ

Then, for 0 ≤ j ′ ≤ j , k ≥ 0 and n ≥ 0:

∥Pθ(Xk ∈ . | Y−j:n) − Pθ(Xk ∈ . | Y−j′:n)∥TV ≤ 2ρk∧n+j′

0 ρk−k∧n
1

Similarly, for 0 ≤ k ≤ j ′ ≤ j and n ≥ 0 one has:

∥Pθ(Xk ∈ . | Y−n:j) − Pθ(Xk ∈ . | Y−n:j′)∥TV ≤ 2ρ−k+j′

0
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Bounds on the Bayes risk

Stationarized Bayes risk

Theorem
Under the same assumptions:∣∣∣R⋆,Offline

n,HMM − R⋆,Offline
stat,HMM

∣∣∣ ≤ 2
n(1 − ρ0)∣∣∣R⋆,Online

n,HMM − R⋆,Online
stat,HMM

∣∣∣ ≤ ρ1
2n

1
1 − ρ0

where ρ0 = 1−2δ
1−δ , ρ1 = 1 − 2δ and δ = mini ,j Qi ,j > 0.
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Bounds on the Bayes risk

Bounds on asymptotic Bayes risk

Theorem
Assume the initial distribution is the stationary distribution. where
δ = mini ,j Qi ,j > 0. One has:

δ

1 − δ
R⋆,Online

θ⋆,∞ ≤ R⋆,Offline
θ⋆,∞ ≤ R⋆,Online

θ⋆,∞

δ

∫
R

[f0 ∧ f1] (z)µ(dz) ≤ R⋆,Online
θ⋆,∞ ≤ (1 − δ)

∫
R

[f0 ∧ f1] (z)µ(dz)
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Bounds on the Bayes risk

Appropriate Signal-to-Noise ratio

Corollary
Assume the initial distribution of the hidden states is the stationary
distribution of Q and in the case of multidimensional gaussian emission
distributions having the same covariance matrix Σ and means µ1 and µ2.
Let SNR = (µ0 − µ1)⊺Σ−1(µ0 − µ1):

δ

2 exp
(

−SNR
2

)
≤ R⋆,Online

θ⋆,∞ ≤ (1 − δ) exp
(

−SNR
8

)
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Plug-in Bayes classifier

Notations

(f0, f1) = Emission densities
θ = (ν, Q, (fx )x=0,1) true parameters
θ̂ = (ν̂, Q̂, (f̂x )x=0,1) estimators of the true parameters

Pθ(Xi ∈ . | Y1:n) smoothing distribution under true parameters θ

Pθ̂(Xi ∈ . | Y1:n) smoothing distribution under estimated parameters θ̂

hOffline
θ (Y1:n) = (1Pθ(Xi =1|Y1:n)>1/2)1≤i≤n Bayes classifier

hOffline
θ̂

(Y1:n) = (1Pθ̂(Xi =1|Y1:n)>1/2)1≤i≤n plug-in Bayes classifier

hOnline
θ (Y1:n) = (1Pθ(Xi =1|Y1:i )>1/2)1≤i≤n Bayes classifier

hOnline
θ̂

(Y1:n) = (1Pθ̂(Xi =1|Y1:i )>1/2)1≤i≤n plug-in Bayes classifier
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Control of smoothing distribution

Theorem (De Castro, Gassiat, Le Corff (2018))
Suppose the initial distribution is the stationary distribution and
δ = mini ,j Qi ,j > 0. Then, for all 1 ≤ i ≤ n and all y1:n ∈ Yn:

∥Pθ(Xi ∈ . | y1:n) − Pθ̂(Xi ∈ . | y1:n)∥TV ≤ 4(1 − δ)
δ2

(
ρi−1∥ν − ν̂∥2+

( 1
1 − ρ

+ 1
1 − ρ̂

)
∥Q − Q̂∥F +

n∑
l=1

(ρ̂ ∨ ρ)|l−i |

f0(yl) ∨ f1(yl)
max
x=0,1

∣∣∣fx (yl) − f̂x (yl)
∣∣∣)

where:
δ̂ = mini ,j Q̂i ,j

ρ = 1−2δ
1−δ and ρ̂ = 1−2δ̂

1−δ̂
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Efficiency of plug-in empirical Bayes classifier

Theorem
Assume in addition that the emission densities f0 and f1 are lower-bounded
by c⋆ > 0. Let δ = mini ,j Qi ,j > 0 and ρ = 1−2δ

1−δ . Then:

ROnline
θ⋆,n (hOnline

θ̂
) − R⋆,Online

θ⋆,n ≤ 4(1 − δ)2

δ3 inf
τ∈S

Eθ⋆

[
1
n∥ντ − ν̂∥2

+ ∥Qτ − Q̂∥F + 1
c⋆

max
x=0,1

||fτ(x) − f̂x ||∞

]

ROffline
θ⋆,n (hOffline

θ̂
) − R⋆,Offline

θ⋆,n ≤ 4(1 − δ)
δ2 inf

τ∈S
Eθ⋆

[
1

n(1 − ρ)∥ντ − ν̂∥2

+
(
1/(1 − ρ) + 1/(1 − ρ̂)

)(
∥Qτ − Q̂∥F + 2

c⋆
max
x=0,1

||fτ(x) − f̂x ||∞
)]
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Rate of convergence

Corollary
Assume f0 ̸= f1 and that they belong to C s(R), the usual space of
s-Hölder-continuous functions.
Assume Q is full-rank, irreducible and aperiodic.
Let Mn −→ +∞ arbitrarily slowly and let kn =

(
log(n)

n

) s
2s+1 .

There exists an estimator θ̂ =
(
π̂, Q̂, (f̂i)i=0,1

)
of θ and a sequence of

random permutations (τn)n of {0, 1} and c , c ′ ≥ 0 such that:

ROnline
θ⋆,n (hOnline

θ̂τn ) − R⋆,Online
θ⋆,n ≤ cM3

nkn

ROffline
θ⋆,n (hOffline

θ̂τn ) − R⋆,Offline
θ⋆,n ≤ c ′M3

nkn
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