# Clustering of Non-Parametric hidden Markov models observations

#### Ibrahim KADDOURI

Joint work with Elisabeth Gassiat and Zacharie Naulet

Université Paris-Saclay, Laboratoire de mathématiques d'Orsay

May 27, 2024





### Clustering

Clustering is an ill-posed problem which aims to find out interesting structures in the data or to derive a useful grouping of the observations.



# Applications of clustering

- Recommender system in social network
- Statistical data analysis
- Anomaly detection
- Image segmentation and object detection
- ...

### Model-based clustering: Mixture models

Observations  $Y=(Y_k)_{1\leq k\leq n}$  coming from J populations. Define latent variables  $X=(X_k)_{1\leq k\leq n}$  such that: for each k,

$$Y_k \mid X_k = j \sim f_j$$

### Model-based clustering: Mixture models

Observations  $Y = (Y_k)_{1 \le k \le n}$  coming from J populations.

Define latent variables  $X = (X_k)_{1 \le k \le n}$  such that: for each k,

$$Y_k \mid X_k = j \sim f_j$$

Then  $Y_k$  has distribution

$$\sum_{i=1}^{J} \pi_j f_j$$

 $\pi_j$ : Probability to come from population j

Useful to model data coming from heterogeneous populations.

### Mixture models: Identifiability

Mixture models are not identifiable :

$$\sum_{j=1}^{J} \pi_j f_j = \frac{\pi_1}{2} f_1 + \left(\frac{\pi_1}{2} + \pi_2\right) \left(\frac{\frac{\pi_1}{2} f_1 + \pi_2 f_2}{\frac{\pi_1}{2} + \pi_2}\right) + \sum_{j=3}^{J} \pi_j f_j$$

# Mixture models: Identifiability

Mixture models are not identifiable :

$$\sum_{j=1}^{J} \pi_j f_j = \frac{\pi_1}{2} f_1 + \left(\frac{\pi_1}{2} + \pi_2\right) \left(\frac{\frac{\pi_1}{2} f_1 + \pi_2 f_2}{\frac{\pi_1}{2} + \pi_2}\right) + \sum_{j=3}^{J} \pi_j f_j$$

Learning of population components possible only under additional structural assumptions such as:

- Parametric mixtures
- Shape restrictions (gaussian, multinomial, ...)
  - → Might lead to poor results in practice

# Hidden Markov Models and why they are useful



Figure: A Hidden Markov Model.

Latent (unobserved) variables  $(X_k)_k$  form a Markov chain. Observations  $(Y_k)_k$  are independent conditionnally to  $(X_k)_k$ .

# Hidden Markov Models and why they are useful



Figure: A Hidden Markov Model.

Latent (unobserved) variables  $(X_k)_k$  form a Markov chain. Observations  $(Y_k)_k$  are independent conditionnally to  $(X_k)_k$ .

HMMs are identifiable without any shape restriction!

### Outline

- Clustering and Hidden Markov Models
- 2 Inference in HMMs
- 3 Clustering: Reconstructing the hidden states
- 4 Bounds on the Bayes risk of classification
- 5 Plug-in Bayes classifier
- 6 Simulations



### Inference in Hidden Markov Models

### The HMM parameters are:

- The initial distribution  $\nu$ .
- The transition matrix Q.
- The emission distributions  $F = (f_i)_{1 \le i \le J}$

**Purpose**: Estimate the model parameters and the hidden states associated to the observations.

### Inference in Hidden Markov Models

Many estimators have been studied in the HMM framework:

- Kernel estimators
- Wavelet estimators
- Projection estimators

The associated optimal rates of convergence were derived.

Fundamental limits for learning these models were also identified.

### Outline

- Clustering and Hidden Markov Models
- 2 Inference in HMMs
- 3 Clustering: Reconstructing the hidden states
- 4 Bounds on the Bayes risk of classification
- 5 Plug-in Bayes classifier
- 6 Simulations

### Online vs offline clustering

We study the risk of clustering observations in two frameworks:

• **Offline**: All observations are used in the clustering procedures. Clustering rules are of the form:  $h(Y_{1:n}) = (h_i(Y_{1:n}))_{1 \le i \le n}$ 

### Online vs offline clustering

We study the risk of clustering observations in two frameworks:

- Offline: All observations are used in the clustering procedures. Clustering rules are of the form:  $h(Y_{1:n}) = (h_i(Y_{1:n}))_{1 \le i \le n}$
- **Online**: Clustering can use only past (and current) observations. Clustering rules are of the form:  $h(Y_{1:n}) = (h_i(Y_{1:i}))_{1 \le i \le n}$

### Online vs offline clustering

We study the risk of clustering observations in two frameworks:

- **Offline**: All observations are used in the clustering procedures. Clustering rules are of the form:  $h(Y_{1:n}) = (h_i(Y_{1:n}))_{1 \le i \le n}$
- Online: Clustering can use only past (and current) observations. Clustering rules are of the form:  $h(Y_{1:n}) = (h_i(Y_{1:i}))_{1 \le i \le n}$

For the moment, we focus on the offline case.

### Risk of clustering

Consider the loss function:

$$L_1(x'_{1:n}, x_{1:n}) = \inf_{\tau \in \mathcal{S}} \frac{1}{n} \sum_{k=1}^n 1_{x'_k \neq \tau(x_k)}$$

### Risk of clustering

Consider the loss function:

$$L_1(x'_{1:n}, x_{1:n}) = \inf_{\tau \in \mathcal{S}} \frac{1}{n} \sum_{k=1}^n 1_{x'_k \neq \tau(x_k)}$$

The risk associated to a classifier h is:

$$\mathcal{R}_{n,HMM}^{cluster}(h) = \mathbb{E}_{\theta}[L_1(h(Y_{1:n}), X_{1:n})] = \mathbb{E}_{\theta}\left[\inf_{\tau \in \mathcal{S}} \frac{1}{n} \sum_{i=1}^n 1_{[h(Y_{1:n})]_i \neq \tau(X_i)}\right]$$

### Risk of clustering

Consider the loss function:

$$L_1(x'_{1:n}, x_{1:n}) = \inf_{\tau \in \mathcal{S}} \frac{1}{n} \sum_{k=1}^n 1_{x'_k \neq \tau(x_k)}$$

The risk associated to a classifier h is:

$$\mathcal{R}_{n,HMM}^{cluster}(h) = \mathbb{E}_{\theta}[L_1(h(Y_{1:n}), X_{1:n})] = \mathbb{E}_{\theta}\left[\inf_{\tau \in \mathcal{S}} \frac{1}{n} \sum_{i=1}^n 1_{[h(Y_{1:n})]_i \neq \tau(X_i)}\right]$$

The purpose is to exhibit bounds on the quantity:

$$\mathcal{R}_{n,HMM}^{\star,cluster} = \inf_{h} \mathcal{R}_{n,HMM}^{cluster}(h)$$

### Upper bound

A straightforward upper-bound on the risk of clustering is:

$$\mathcal{R}_{n,HMM}^{\star,cluster} \leq \inf_{h} \mathbb{E}\left[\frac{1}{n} \sum_{i=1}^{n} 1_{[h(Y_{1:n})]_i \neq X_i}\right] = \mathcal{R}_{n,HMM}^{\star,classif}$$

where  $\mathcal{R}_{n,HMM}^{\star,classif} = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{\theta^{\star}} \left[ \min_{x \in \mathbb{X}} \mathbb{P} \left( X_{i} \neq x \mid Y_{1:n} \right) \right]$  corresponds to the Bayes risk of classification of HMM observations.

### Lower bound

#### **Theorem**

Assume  $\delta = \min_{i,j} Q_{i,j} > 0$ . Then, the risk of clustering and classification ensure the following inequalities:

For iid observations:

$$\mathcal{R}^{\star,Offline}_{\theta^{\star},n}(L_1) - \sqrt{\frac{\log(J!)}{2n}} \leq \mathcal{R}^{\star,Offline}_{\theta^{\star},n}(L_2) \leq \mathcal{R}^{\star,Offline}_{\theta^{\star},n}(L_1)$$

For HMM observations:

$$\mathcal{R}^{\star,Offline}_{\theta^{\star},n}(\mathit{L}_{1}) - \frac{1}{1-\rho_{0}}\sqrt{\frac{\mathsf{log}(\mathit{J}!)}{2\mathit{n}}} \leq \mathcal{R}^{\star,Offline}_{\theta^{\star},n}(\mathit{L}_{2}) \leq \mathcal{R}^{\star,Offline}_{\theta^{\star},n}(\mathit{L}_{1})$$

where J is the number of classes,  $\rho_0 = \frac{1-J\delta}{1-(J-1)\delta}$ . Exactly similar inequalities hold for the risk of online clustering.

### Outline

- Clustering and Hidden Markov Models
- 2 Inference in HMMs
- Clustering: Reconstructing the hidden states
- Bounds on the Bayes risk of classification
- 5 Plug-in Bayes classifier
- 6 Simulations

# Stationarized Bayes risk

Consider the following quantities:

$$\mathcal{R}^{\star,Offline}_{\theta^{\star},n}(L_{1}) = \inf_{h} \mathcal{R}^{Offline}_{\theta^{\star},n}(L_{1},h) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{\theta^{\star}} \left[ \min_{x \in \mathbb{X}} \mathbb{P} \left( X_{i} \neq x \mid Y_{1:n} \right) \right]$$
 
$$\mathcal{R}^{\star,Offline}_{\theta^{\star},stat}(L_{1}) = \mathbb{E}_{\theta^{\star}} \left[ \min_{x \in \mathbb{X}} \mathbb{P}_{\theta^{\star}} \left( X_{0} \neq x \mid Y_{-\infty:+\infty} \right) \right]$$
 
$$\mathcal{R}^{\star,Online}_{\theta^{\star},n}(L_{1}) = \inf_{h} \mathcal{R}^{Online}_{\theta^{\star},n}(L_{1},h) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{\theta^{\star}} \left[ \min_{x \in \mathbb{X}} \mathbb{P}_{\theta^{\star}} \left( X_{i} \neq x \mid Y_{1:i} \right) \right]$$
 
$$\mathcal{R}^{\star,Online}_{\theta^{\star},stat}(L_{1}) = \mathbb{E}_{\theta^{\star}} \left[ \min_{x \in \mathbb{X}} \mathbb{P}_{\theta^{\star}} \left( X_{0} \neq x \mid Y_{-\infty:0} \right) \right]$$

# Exponential forgetting

### Proposition

#### Assume:

- The initial distribution is the stationary distribution
- The HMM model is comprised of two hidden states
- $\bullet \ \delta = \min_{i,j} Q_{i,j} > 0$
- $\rho_0 = \frac{1-2\delta}{1-\delta}$  and  $\rho_1 = 1-2\delta$

# Exponential forgetting

### Proposition

#### Assume:

- The initial distribution is the stationary distribution
- The HMM model is comprised of two hidden states
- $\delta = \min_{i,j} Q_{i,j} > 0$
- $\bullet$   $ho_0 = rac{1-2\delta}{1-\delta}$  and  $ho_1 = 1-2\delta$

Then, for  $0 \le j' \le j$ ,  $k \ge 0$  and  $n \ge 0$ :

$$\|\mathbb{P}_{\theta}(X_k \in . \mid Y_{-j:n}) - \mathbb{P}_{\theta}(X_k \in . \mid Y_{-j':n})\|_{TV} \le 2\rho_0^{k \wedge n + j'} \rho_1^{k - k \wedge n}$$

# Exponential forgetting

### Proposition

#### Assume:

- The initial distribution is the stationary distribution
- The HMM model is comprised of two hidden states
- $\delta = \min_{i,j} Q_{i,j} > 0$
- $\bullet$   $ho_0 = rac{1-2\delta}{1-\delta}$  and  $ho_1 = 1-2\delta$

Then, for  $0 \le j' \le j$ ,  $k \ge 0$  and  $n \ge 0$ :

$$\|\mathbb{P}_{\theta}(X_k \in . \mid Y_{-j:n}) - \mathbb{P}_{\theta}(X_k \in . \mid Y_{-j':n})\|_{TV} \le 2\rho_0^{k \wedge n + j'} \rho_1^{k - k \wedge n}$$

Similarly, for  $0 \le k \le j' \le j$  and  $n \ge 0$  one has:

$$\|\mathbb{P}_{\theta}(X_k \in . \mid Y_{-n:j}) - \mathbb{P}_{\theta}(X_k \in . \mid Y_{-n:j'})\|_{TV} \le 2\rho_0^{-k+j'}$$

### Stationarized Bayes risk

#### **Theorem**

Under the same assumptions:

$$\begin{split} \left| \mathcal{R}_{n,HMM}^{\star,Offline} - \mathcal{R}_{stat,HMM}^{\star,Offline} \right| &\leq \frac{2}{n(1-\rho_0)} \\ \left| \mathcal{R}_{n,HMM}^{\star,Online} - \mathcal{R}_{stat,HMM}^{\star,Online} \right| &\leq \frac{\rho_1}{2n} \frac{1}{1-\rho_0} \end{split}$$

where 
$$ho_0=rac{1-2\delta}{1-\delta}$$
,  $ho_1=1-2\delta$  and  $\delta=\min_{i,j}Q_{i,j}>0$ .

# Bounds on asymptotic Bayes risk

#### **Theorem**

Assume the initial distribution is the stationary distribution. where  $\delta = \min_{i,j} Q_{i,j} > 0$ . One has:

$$\frac{\delta}{1-\delta}\mathcal{R}_{\theta^{\star},\infty}^{\star,Online} \leq \mathcal{R}_{\theta^{\star},\infty}^{\star,Offline} \leq \mathcal{R}_{\theta^{\star},\infty}^{\star,Online}$$

# Bounds on asymptotic Bayes risk

#### **Theorem**

Assume the initial distribution is the stationary distribution. where  $\delta = \min_{i,j} Q_{i,j} > 0$ . One has:

$$\frac{\delta}{1-\delta}\mathcal{R}^{\star,Online}_{\theta^\star,\infty} \leq \mathcal{R}^{\star,Offline}_{\theta^\star,\infty} \leq \mathcal{R}^{\star,Online}_{\theta^\star,\infty}$$

$$\delta \int_{\mathbb{R}} \left[ f_0 \wedge f_1 \right](z) \mu(dz) \leq \mathcal{R}_{\theta^{\star},\infty}^{\star,Online} \leq (1-\delta) \int_{\mathbb{R}} \left[ f_0 \wedge f_1 \right](z) \mu(dz)$$

### Appropriate Signal-to-Noise ratio

### Corollary

Assume the initial distribution of the hidden states is the stationary distribution of Q and in the case of multidimensional gaussian emission distributions having the same covariance matrix  $\Sigma$  and means  $\mu_1$  and  $\mu_2$ . Let  $SNR = (\mu_0 - \mu_1)^\intercal \Sigma^{-1} (\mu_0 - \mu_1)$ :

$$\frac{\delta}{2} \exp\left(-\frac{\textit{SNR}}{2}\right) \leq \mathcal{R}^{\star,\textit{Online}}_{\theta^\star,\infty} \leq (1-\delta) \exp\left(-\frac{\textit{SNR}}{8}\right)$$

### Outline

- Clustering and Hidden Markov Models
- 2 Inference in HMMs
- Clustering: Reconstructing the hidden states
- 4 Bounds on the Bayes risk of classification
- 6 Plug-in Bayes classifier
- Simulations



### Notations

$$(f_0,f_1) = \text{Emission densities}$$

$$\theta = (\nu,Q,(f_x)_{x=0,1}) \text{ true parameters}$$

$$\hat{\theta} = (\hat{\nu},\hat{Q},(\hat{f}_x)_{x=0,1}) \text{ estimators of the true parameters}$$

$$\mathbb{P}_{\theta}(X_i \in . \mid Y_{1:n}) \quad \text{smoothing distribution under true parameters } \theta$$

$$\mathbb{P}_{\hat{\theta}}(X_i \in . \mid Y_{1:n}) \quad \text{smoothing distribution under estimated parameters } \hat{\theta}$$

$$h_{\theta}^{Offline}(Y_{1:n}) = (1_{\mathbb{P}_{\hat{\theta}}(X_i=1|Y_{1:n})>1/2})_{1 \leq i \leq n} \quad \text{Bayes classifier}$$

$$h_{\hat{\theta}}^{Offline}(Y_{1:n}) = (1_{\mathbb{P}_{\hat{\theta}}(X_i=1|Y_{1:n})>1/2})_{1 \leq i \leq n} \quad \text{plug-in Bayes classifier}$$

$$h_{\theta}^{Online}(Y_{1:n}) = (1_{\mathbb{P}_{\hat{\theta}}(X_i=1|Y_{1:i})>1/2})_{1 \leq i \leq n} \quad \text{Bayes classifier}$$

$$h_{\hat{\theta}}^{Online}(Y_{1:n}) = (1_{\mathbb{P}_{\hat{\theta}}(X_i=1|Y_{1:i})>1/2})_{1 \leq i \leq n} \quad \text{plug-in Bayes classifier}$$

### Reconstruction algorithm

In practice  $\theta$  is unknown. One rather uses an estimator  $\hat{\theta}$  and the algorithm yields:

$$\hat{h}(Y_{1:n}) = \left( rg \max_{x_k \in \mathbb{X}} \mathbb{P}_{\hat{\theta}}(X_k = x_k \mid Y_{1:n}) \right)_{1 \leq k \leq n}$$

### Reconstruction algorithm

In practice  $\theta$  is unknown. One rather uses an estimator  $\hat{\theta}$  and the algorithm yields:

$$\hat{h}(Y_{1:n}) = \left(\argmax_{x_k \in \mathbb{X}} \mathbb{P}_{\hat{\theta}}(X_k = x_k \mid Y_{1:n})\right)_{1 \leq k \leq n}$$

### Algorithm 2: MAP classifier algorithm

Assume  $\mathbb{X} = \{0, ..., r - 1\}, \ \theta = (\nu, Q, F)$  is given.;

Using the Forward-Backward algorithm, compute

$$\mathbb{P}_{\theta}(X_1 = . \mid Y_{1:n}), ..., \mathbb{P}_{\theta}(X_n = . \mid Y_{1:n}).;$$

for  $k \in \{1, ..., n\}$  do

$$| x_k = \arg\max_{0 \le x \le r-1} \mathbb{P}_{\theta}(X_k = x \mid Y_{1:n})$$

# Efficiency of plug-in empirical Bayes classifier

#### **Theorem**

Assume in addition that the emission densities  $f_0$  and  $f_1$  are lower-bounded by  $c^*>0$ . Let  $\delta=\min_{i,j}Q_{i,j}>0$  and  $\rho=\frac{1-2\delta}{1-\delta}$ . Then:

$$\begin{split} \mathcal{R}^{Online}_{\theta^{\star},n}(h^{Online}_{\hat{\theta}}) - \mathcal{R}^{\star,Online}_{\theta^{\star},n} &\leq \frac{4(1-\delta)^2}{\delta^3} \inf_{\tau \in \mathcal{S}} \mathbb{E}_{\theta^{\star}} \left[ \frac{1}{n} \| \nu^{\tau} - \hat{\nu} \|_2 \right. \\ &+ \| Q^{\tau} - \hat{Q} \|_F + \frac{1}{c^{\star}} \max_{x=0,1} \lVert f_{\tau(x)} - \hat{f}_x \rVert_{\infty} \bigg] \end{split}$$

$$\begin{split} &\mathcal{R}^{Offline}_{\theta^{\star},n}(h^{Offline}_{\hat{\theta}}) - \mathcal{R}^{\star,Offline}_{\theta^{\star},n} \leq \frac{4(1-\delta)}{\delta^2} \inf_{\tau \in \mathcal{S}} \mathbb{E}_{\theta^{\star}} \left[ \frac{1}{n(1-\rho)} \| \nu^{\tau} - \hat{\nu} \|_2 \right. \\ &\left. + \left( 1/(1-\rho) + 1/(1-\hat{\rho}) \right) \left( \| Q^{\tau} - \hat{Q} \|_F + \frac{2}{C^{\star}} \max_{x=0.1} \| f_{\tau(x)} - \hat{f}_x \|_{\infty} \right) \right] \end{split}$$

### Rate of convergence

### Corollary

Assume  $f_0 \neq f_1$  and that they belong to  $C^s(\mathbb{R})$ , the usual space of s-Hölder-continuous functions.

Assume Q is full-rank, irreducible and aperiodic.

Let 
$$M_n \to +\infty$$
 arbitrarily slowly and let  $k_n = \left(\frac{\log(n)}{n}\right)^{\frac{s}{2s+1}}$ .

There exists an estimator  $\hat{\theta} = (\hat{\pi}, \hat{Q}, (\hat{f}_i)_{i=0,1})$  of  $\theta$  and a sequence of random permutations  $(\tau_n)_n$  of  $\{0,1\}$  and  $c,c' \geq 0$  such that:

$$\mathcal{R}^{Online}_{\theta^{\star},n}(h^{Online}_{\hat{\theta}^{\tau_n}}) - \mathcal{R}^{\star,Online}_{\theta^{\star},n} \leq c M_n^3 k_n$$

$$\mathcal{R}^{Offline}_{\theta^{\star},n}(h^{Offline}_{\hat{\alpha}_{T_n}}) - \mathcal{R}^{\star,Offline}_{\theta^{\star},n} \leq c' M_n^3 k_n$$

### Two examples

Data are generated through the same transition matrix  $Q = \begin{pmatrix} 0.8 & 0.2 \\ 0.3 & 0.7 \end{pmatrix}$ .

- First example: A sample of size  $n = 5.10^4$  is generated from two gaussian mixtures :  $\frac{1}{2} \left( \mathcal{N}(1.7, 0.2) + \mathcal{N}(7, 0.15) \right)$  and  $\frac{1}{2} \left( \mathcal{N}(3.5, 0.2) + \mathcal{N}(5, 0.4) \right)$ .
- Second example: A sample of size  $n=10^5$  is generated from two gaussian mixtures  $:\frac{1}{2}\left(\mathcal{N}(3,0.6)+\mathcal{N}(7,0.4)\right)$  and  $\frac{1}{2}\left(\mathcal{N}(5,0.3)+\mathcal{N}(9,0.4)\right)$ .

**Purpose:** Retrieve the sequence of hidden states using only the observations.



### Example 1





Figure: Histograms of the clusters. Left: clustering using plug-in classifier. Right: K-means clustering

# Example 2





Figure: Histograms of the clusters. Left: clustering using plug-in classifier. Right: K-means clustering

# Clustering errors

|           | Bayes classifier | Plug-in classifier | K-means algorithm |  |
|-----------|------------------|--------------------|-------------------|--|
| Example 1 | 1.56%            | 1.61%              | 46.7%             |  |
| Example 2 | 6.42%            | 6.51%              | 47.3%             |  |

Table: Errors of clustering using 3 algorithms: the Bayes classifier (using the true model parameters), the plug-in classifier (using the estimated parameters) and the K-means algorithm.