Clustering of Non-Parametric hidden Markov models observations

Ibrahim KADDOURI

Joint work with Elisabeth Gassiat and Zacharie Naulet

Université Paris-Saclay, Laboratoire de mathématiques d'Orsay

May 27, 2024

Ibrahim KADDOURI [Clustering of Non-Parametric hidden Markov models observations](#page-39-0) May 27, 2024 1 / 29

 200

Clustering

Clustering is an ill-posed problem which aims to find out interesting structures in the data or to derive a useful grouping of the observations.

Applications of clustering

- Recommender system in social network
- Statistical data analysis
- **•** Anomaly detection
- Image segmentation and object detection

 \bullet ...

イロト イ押ト イヨト イヨトー

э

Model-based clustering: Mixture models

Observations $Y = (Y_k)_{1 \leq k \leq n}$ coming from J populations. Define latent variables $X = (X_k)_{1 \leq k \leq n}$ such that: for each k,

$$
Y_k \mid X_k = j \sim f_j
$$

Model-based clustering: Mixture models

Observations $Y = (Y_k)_{1 \leq k \leq n}$ coming from J populations. Define latent variables $X = (X_k)_{1 \leq k \leq n}$ such that: for each k,

$$
Y_k \mid X_k = j \sim f_j
$$

Then Y_k has distribution

$$
\sum_{j=1}^J \pi_j f_j
$$

*π*j : Probability to come from population j

Useful to model data coming from heterogeneous populations.

Mixture models: Identifiability

Mixture models are not identifiable :

$$
\sum_{j=1}^{J} \pi_j f_j = \frac{\pi_1}{2} f_1 + \left(\frac{\pi_1}{2} + \pi_2\right) \left(\frac{\frac{\pi_1}{2} f_1 + \pi_2 f_2}{\frac{\pi_1}{2} + \pi_2}\right) + \sum_{j=3}^{J} \pi_j f_j
$$

D.

Mixture models: Identifiability

Mixture models are not identifiable :

$$
\sum_{j=1}^{J} \pi_j f_j = \frac{\pi_1}{2} f_1 + \left(\frac{\pi_1}{2} + \pi_2\right) \left(\frac{\frac{\pi_1}{2} f_1 + \pi_2 f_2}{\frac{\pi_1}{2} + \pi_2}\right) + \sum_{j=3}^{J} \pi_j f_j
$$

Learning of population components possible only under additional structural assumptions such as:

- **Parametric mixtures**
- Shape restrictions (gaussian, multinomial, ...)

\rightarrow Might lead to poor results in practice

Hidden Markov Models and why they are useful

Figure: A Hidden Markov Model.

Latent (unobserved) variables $(X_k)_k$ form a Markov chain. Observations $(Y_k)_k$ are independent conditionnally to $(X_k)_k$.

Hidden Markov Models and why they are useful

Figure: A Hidden Markov Model.

Latent (unobserved) variables $(X_k)_k$ form a Markov chain. Observations $(Y_k)_k$ are independent conditionnally to $(X_k)_k$.

HMMs are identifiable without any shape restriction!

Ibrahim KADDOURI Clustering of Non-Parametric hidden Markov May 27, 2024 6/29

Outline

2 [Inference in HMMs](#page-9-0)

- [Clustering: Reconstructing the hidden states](#page-12-0)
- [Bounds on the Bayes risk of classification](#page-21-0)
- 5 [Plug-in Bayes classifier](#page-30-0)
- **[Simulations](#page-36-0)**

イロト イ押ト イヨト イヨト

э

Inference in Hidden Markov Models

The HMM parameters are:

- The initial distribution *ν*.
- The transition matrix Q.
- The emission distributions $F = (f_i)_{1 \leq i \leq J}$

Purpose: Estimate the model parameters and the hidden states associated to the observations.

э

Inference in Hidden Markov Models

Many estimators have been studied in the HMM framework:

- **Kernel estimators**
- **Wavelet estimators**
- **Projection estimators**

The associated optimal rates of convergence were derived. Fundamental limits for learning these models were also identified.

Outline

[Inference in HMMs](#page-9-0)

3 [Clustering: Reconstructing the hidden states](#page-12-0)

[Bounds on the Bayes risk of classification](#page-21-0)

5 [Plug-in Bayes classifier](#page-30-0)

[Simulations](#page-36-0)

K ロ ▶ K 伺 ▶ K ヨ ▶ K ヨ ▶

÷.

Online vs offline clustering

We study the risk of clustering observations in two frameworks:

Offline: All observations are used in the clustering procedures. Clustering rules are of the form: $h(Y_{1:n}) = (h_i(Y_{1:n}))_{1 \leq i \leq n}$

 -100

÷.

Online vs offline clustering

We study the risk of clustering observations in two frameworks:

- **Offline**: All observations are used in the clustering procedures. Clustering rules are of the form: $h(Y_{1:n}) = (h_i(Y_{1:n}))_{1 \le i \le n}$
- **Online**: Clustering can use only past (and current) observations. Clustering rules are of the form: $h(Y_{1:n}) = (h_i(Y_{1:i}))_{1 \le i \le n}$

Online vs offline clustering

We study the risk of clustering observations in two frameworks:

- **Offline**: All observations are used in the clustering procedures. Clustering rules are of the form: $h(Y_{1:n}) = (h_i(Y_{1:n}))_{1 \le i \le n}$
- **Online**: Clustering can use only past (and current) observations. Clustering rules are of the form: $h(Y_{1:n}) = (h_i(Y_{1:i}))_{1 \leq i \leq n}$

For the moment, we focus on the **offline case**.

Risk of clustering

Consider the loss function:

$$
L_1(x'_{1:n}, x_{1:n}) = \inf_{\tau \in S} \frac{1}{n} \sum_{k=1}^n 1_{x'_k \neq \tau(x_k)}
$$

(目)

Risk of clustering

Consider the loss function:

$$
L_1(x'_{1:n}, x_{1:n}) = \inf_{\tau \in S} \frac{1}{n} \sum_{k=1}^n 1_{x'_k \neq \tau(x_k)}
$$

The risk associated to a classifier h is:

$$
\mathcal{R}_{n,HMM}^{cluster}(h) = \mathbb{E}_{\theta}[L_1(h(Y_{1:n}), X_{1:n})] = \mathbb{E}_{\theta}\left[\inf_{\tau \in \mathcal{S}} \frac{1}{n} \sum_{i=1}^n 1_{[h(Y_{1:n})]_i \neq \tau(X_i)}\right]
$$

K ロ ⊁ K 御 ⊁ K 君 ⊁ K 君 ⊁ …

 \Rightarrow

Risk of clustering

Consider the loss function:

$$
L_1(x'_{1:n}, x_{1:n}) = \inf_{\tau \in S} \frac{1}{n} \sum_{k=1}^n 1_{x'_k \neq \tau(x_k)}
$$

The risk associated to a classifier h is:

$$
\mathcal{R}_{n,HMM}^{cluster}(h) = \mathbb{E}_{\theta}[L_1(h(Y_{1:n}), X_{1:n})] = \mathbb{E}_{\theta}\left[\inf_{\tau \in \mathcal{S}} \frac{1}{n} \sum_{i=1}^n 1_{[h(Y_{1:n})]_i \neq \tau(X_i)}\right]
$$

The purpose is to exhibit bounds on the quantity:

$$
\mathcal{R}_{n,HMM}^{\star,cluster} = \inf_h \mathcal{R}_{n,HMM}^{cluster}(h)
$$

イロト イ押ト イヨト イヨトー

÷.

Upper bound

A straightforward upper-bound on the risk of clustering is:

$$
\mathcal{R}_{n,HMM}^{\star,cluster} \le \inf_{h} \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n} 1_{[h(Y_{1:n})]_i \neq X_i}\right] = \mathcal{R}_{n,HMM}^{\star,classif}
$$

where $\mathcal{R}_{n,\textit{HMM}}^{\star,\textit{classif}}=\frac{1}{n}$ $\frac{1}{n}\sum_{i=1}^n {\mathbb E}_{\theta^\star}\left[\min_{\mathsf{x}\in\mathbb{X}} \mathbb{P}\left(\mathsf{X}_i\neq \mathsf{x} \mid \mathsf{Y}_{1:n}\right)\right]$ corresponds to the Bayes risk of classification of HMM observations.

Lower bound

Theorem

Assume $\delta = \min_{i,j} Q_{i,j} > 0$. Then, the risk of clustering and classification ensure the following inequalities:

• For iid observations:

$$
\mathcal{R}_{\theta^\star,n}^{\star,\text{Offline}}(L_1) - \sqrt{\frac{\log(J!)}{2n}} \leq \mathcal{R}_{\theta^\star,n}^{\star,\text{Offline}}(L_2) \leq \mathcal{R}_{\theta^\star,n}^{\star,\text{Offline}}(L_1)
$$

• For HMM observations:

$$
\mathcal{R}_{\theta^\star,n}^{\star, \text{Offline}}(L_1) - \frac{1}{1-\rho_0}\sqrt{\frac{\log(J!)}{2n}} \leq \mathcal{R}_{\theta^\star,n}^{\star, \text{Offline}}(L_2) \leq \mathcal{R}_{\theta^\star,n}^{\star, \text{Offline}}(L_1)
$$

where J is the number of classes, $\rho_0 = \frac{1-\delta \delta}{1-(1-\delta \epsilon)}$ $\frac{1-J\delta}{1-(J-1)\delta}.$ Exactly similar inequalities hold for the risk of online clustering.

Outline

- **[Clustering and Hidden Markov Models](#page-1-0)**
- [Inference in HMMs](#page-9-0)
- [Clustering: Reconstructing the hidden states](#page-12-0)
- 4 [Bounds on the Bayes risk of classification](#page-21-0)
- [Plug-in Bayes classifier](#page-30-0)

[Simulations](#page-36-0)

G.

 QQ

K ロ ▶ K 伺 ▶ K ヨ ▶ K ヨ ▶

Stationarized Bayes risk

Consider the following quantities:

$$
\mathcal{R}_{\theta^{\star},n}^{\star,\text{Offline}}(L_{1}) = \inf_{h} \mathcal{R}_{\theta^{\star},n}^{\text{Offline}}(L_{1},h) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{\theta^{\star}} \left[\min_{x \in \mathbb{X}} \mathbb{P} \left(X_{i} \neq x \mid Y_{1:n} \right) \right]
$$
\n
$$
\mathcal{R}_{\theta^{\star},\text{stat}}^{\star,\text{Offline}}(L_{1}) = \mathbb{E}_{\theta^{\star}} \left[\min_{x \in \mathbb{X}} \mathbb{P}_{\theta^{\star}} \left(X_{0} \neq x \mid Y_{-\infty;+\infty} \right) \right]
$$
\n
$$
\mathcal{R}_{\theta^{\star},n}^{\star,\text{Online}}(L_{1}) = \inf_{h} \mathcal{R}_{\theta^{\star},n}^{\text{Online}}(L_{1},h) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{\theta^{\star}} \left[\min_{x \in \mathbb{X}} \mathbb{P}_{\theta^{\star}} \left(X_{i} \neq x \mid Y_{1:i} \right) \right]
$$
\n
$$
\mathcal{R}_{\theta^{\star},\text{stat}}^{\star,\text{Online}}(L_{1}) = \mathbb{E}_{\theta^{\star}} \left[\min_{x \in \mathbb{X}} \mathbb{P}_{\theta^{\star}} \left(X_{0} \neq x \mid Y_{-\infty:0} \right) \right]
$$

÷.

Exponential forgetting

Proposition

Assume:

- The initial distribution is the stationary distribution
- The HMM model is comprised of two hidden states

$$
\bullet \ \delta = \min_{i,j} Q_{i,j} > 0
$$

•
$$
\rho_0 = \frac{1-2\delta}{1-\delta}
$$
 and $\rho_1 = 1-2\delta$

イロト イ押 トイヨ トイヨト

÷,

Exponential forgetting

Proposition

Assume:

- The initial distribution is the stationary distribution
- The HMM model is comprised of two hidden states

\n- $$
\delta = \min_{i,j} Q_{i,j} > 0
$$
\n- $\rho_0 = \frac{1-2\delta}{1-\delta}$ and $\rho_1 = 1-2\delta$
\n- Then, for $0 \leq j' \leq j$, $k \geq 0$ and $n \geq 0$:
\n

$$
\|\mathbb{P}_{\theta}(X_k \in . \mid Y_{-j:n}) - \mathbb{P}_{\theta}(X_k \in . \mid Y_{-j':n})\|_{TV} \leq 2\rho_0^{k \wedge n+j'}\rho_1^{k-k \wedge n}
$$

 QQ

イロト イ押 トイヨ トイヨト

Exponential forgetting

Proposition

Assume:

- The initial distribution is the stationary distribution
- The HMM model is comprised of two hidden states

\n- $$
\delta = \min_{i,j} Q_{i,j} > 0
$$
\n- $\rho_0 = \frac{1-2\delta}{1-\delta}$ and $\rho_1 = 1-2\delta$
\n- Then, for $0 \leq j' \leq j$, $k \geq 0$ and $n \geq 0$:
\n

$$
\|\mathbb{P}_{\theta}(X_k \in . \mid Y_{-j:n}) - \mathbb{P}_{\theta}(X_k \in . \mid Y_{-j':n})\|_{TV} \leq 2\rho_0^{k \wedge n+j'}\rho_1^{k-k \wedge n}
$$

Similarly, for $0 \le k \le j' \le j$ and $n \ge 0$ one has:

$$
\|\mathbb{P}_{\theta}(X_k \in . \mid Y_{-n:j}) - \mathbb{P}_{\theta}(X_k \in . \mid Y_{-n:j'})\|_{TV} \leq 2\rho_0^{-k+j'}
$$

D.

 Ω

イロト イ押 トイヨ トイヨト

Stationarized Bayes risk

Theorem

Under the same assumptions:

$$
\left| \mathcal{R}_{n,HMM}^{\star,Offline} - \mathcal{R}_{stat,HMM}^{\star,Offline} \right| \le \frac{2}{n(1 - \rho_0)}
$$

$$
\left| \mathcal{R}_{n,HMM}^{\star,Online} - \mathcal{R}_{stat,HMM}^{\star,Online} \right| \le \frac{\rho_1}{2n} \frac{1}{1 - \rho_0}
$$

where
$$
\rho_0 = \frac{1-2\delta}{1-\delta}
$$
, $\rho_1 = 1-2\delta$ and $\delta = \min_{i,j} Q_{i,j} > 0$.

D.

 \sqrt{m} \rightarrow \sqrt{m} \rightarrow \sqrt{m} \rightarrow

€ □ E

Bounds on asymptotic Bayes risk

Theorem

Assume the initial distribution is the stationary distribution. where δ = min_{*i,j*} Q_{*i,j*} > 0. One has:

$$
\frac{\delta}{1-\delta}\mathcal{R}_{\theta^\star,\infty}^{\star, Online} \leq \mathcal{R}_{\theta^\star,\infty}^{\star,offline} \leq \mathcal{R}_{\theta^\star,\infty}^{\star,Online}
$$

 \leftarrow \Box

G.

Bounds on asymptotic Bayes risk

Theorem

Assume the initial distribution is the stationary distribution. where δ = min_{*i,j*} Q_{*i,j*} > 0. One has:

$$
\frac{\delta}{1-\delta}\mathcal{R}_{\theta^\star,\infty}^{\star, Online} \leq \mathcal{R}_{\theta^\star,\infty}^{\star,offline} \leq \mathcal{R}_{\theta^\star,\infty}^{\star,Online}
$$

$$
\delta\int_{\mathbb{R}}\left[f_{0}\wedge f_{1}\right](z)\mu(dz)\leq\mathcal{R}_{\theta^{\star},\infty}^{\star, Online}\leq (1-\delta)\int_{\mathbb{R}}\left[f_{0}\wedge f_{1}\right](z)\mu(dz)
$$

G.

 Ω

イ何 ト イヨ ト イヨ トー

 \leftarrow \Box

Appropriate Signal-to-Noise ratio

Corollary

Assume the initial distribution of the hidden states is the stationary distribution of Q and in the case of multidimensional gaussian emission distributions having the same covariance matrix Σ and means μ_1 and μ_2 . Let $SNR = (\mu_0 - \mu_1)^T \Sigma^{-1} (\mu_0 - \mu_1)$:

$$
\frac{\delta}{2}\exp\left(-\frac{\textsf{SNR}}{2}\right)\leq \mathcal{R}_{\theta^\star,\infty}^{\star,\text{Online}}\leq (1-\delta)\exp\left(-\frac{\textsf{SNR}}{8}\right)
$$

Outline

- **[Clustering and Hidden Markov Models](#page-1-0)**
- [Inference in HMMs](#page-9-0)
- [Clustering: Reconstructing the hidden states](#page-12-0)
- [Bounds on the Bayes risk of classification](#page-21-0)

5 [Plug-in Bayes classifier](#page-30-0)

[Simulations](#page-36-0)

G.

K ロ ▶ K 伺 ▶ K ヨ ▶ K ヨ ▶

Notations

 (f_0, f_1) = Emission densities $\theta = (\nu, Q, (f_x)_{x=0,1})$ true parameters $\hat{\theta} = (\hat{\nu}, \hat{\bm{Q}}, (\hat{f}_\mathsf{x})_{\mathsf{x}=0,1})$ estimators of the true parameters $\mathbb{P}_{\theta}(X_i \in . \mid Y_{1:n})$ smoothing distribution under true parameters θ $\mathbb{P}_{\hat{\theta}}(X_i \in . \mid Y_{1:n})$ smoothing distribution under estimated parameters $\hat{\theta}$ $h_\theta^{Offline}({\sf Y}_{1:n})=({\sf 1}_{\mathbb{P}_\theta({\sf X}_i=1|{\sf Y}_{1:n})>1/2})$ Bayes classifier $h_{\hat{\theta}}^{Offline}(\textit{\textbf{Y}}_{1:n}) = (1_{\mathbb{P}_{\hat{\theta}}(\textit{\textbf{X}}_i=1|\textit{\textbf{Y}}_{1:n})>1/2}$ plug-in Bayes classifier $h_\theta^{\text{Online}}(\mathsf{Y}_{1:n}) = (1_{\mathbb{P}_\theta(\mathsf{X}_i=1|\mathsf{Y}_{1:i})>1/2}$ Bayes classifier $h_{\hat{\theta}}^{Online}(Y_{1:n}) = (\mathbb{1}_{\mathbb{P}_{\hat{\theta}}(X_i=1|Y_{1:i})>1/2})$ plug-in Bayes classifier

Reconstruction algorithm

In practice *θ* is unknown. One rather uses an estimator *θ*ˆ and the algorithm yields:

$$
\hat{h}(Y_{1:n}) = \left(\argmax_{x_k \in \mathbb{X}} \mathbb{P}_{\hat{\theta}}(X_k = x_k \mid Y_{1:n})\right)_{1 \leq k \leq n}
$$

÷.

Reconstruction algorithm

In practice *θ* is unknown. One rather uses an estimator *θ*ˆ and the algorithm yields:

$$
\hat{h}(Y_{1:n}) = \left(\arg\max_{x_k \in \mathbb{X}} \mathbb{P}_{\hat{\theta}}(X_k = x_k \mid Y_{1:n})\right)_{1 \leq k \leq n}
$$

Algorithm 2: MAP classifier algorithm

Assume $X = \{0, ..., r - 1\}, \theta = (\nu, Q, F)$ is given.; Using the **Forward-Backward** algorithm, compute $\mathbb{P}_{\theta}(X_1 = . \mid Y_{1:n}), \dots, \mathbb{P}_{\theta}(X_n = . \mid Y_{1:n}),$ **for** $k \in \{1, ..., n\}$ **do** \vert $x_k = \arg \max_{0 \le x \le r-1} \mathbb{P}_{\theta}(X_k = x \mid Y_{1:n})$

KEL KALIKI II YA ALIKI

Efficiency of plug-in empirical Bayes classifier

Theorem

Assume in addition that the emission densities f_0 and f_1 are lower-bounded by $c^* > 0$. Let $\delta = \min_{i,j} Q_{i,j} > 0$ and $\rho = \frac{1-2\delta}{1-\delta}$ 1−*δ* . Then:

$$
\mathcal{R}_{\theta^{\star},n}^{\text{Online}}(h_{\hat{\theta}}^{\text{Online}}) - \mathcal{R}_{\theta^{\star},n}^{\star,\text{Online}} \leq \frac{4(1-\delta)^{2}}{\delta^{3}} \inf_{\tau \in \mathcal{S}} \mathbb{E}_{\theta^{\star}} \left[\frac{1}{n} ||\nu^{\tau} - \hat{\nu}||_{2} + ||\mathcal{Q}^{\tau} - \hat{\mathcal{Q}}||_{\mathcal{F}} + \frac{1}{c^{\star}} \max_{x=0,1} ||f_{\tau(x)} - \hat{f}_{x}||_{\infty} \right]
$$

$$
\mathcal{R}_{\theta^{\star},n}^{Offline}(h_{\hat{\theta}}^{Offline}) - \mathcal{R}_{\theta^{\star},n}^{\star,Offline} \leq \frac{4(1-\delta)}{\delta^2} \inf_{\tau \in \mathcal{S}} \mathbb{E}_{\theta^{\star}} \bigg[\frac{1}{n(1-\rho)} ||\nu^{\tau} - \hat{\nu}||_2
$$

$$
+ \Big(1/(1-\rho) + 1/(1-\hat{\rho}) \Big) \Big(||Q^{\tau} - \hat{Q}||_F + \frac{2}{c^{\star}} \max_{x=0,1} ||f_{\tau(x)} - \hat{f}_x||_{\infty} \Big) \bigg]
$$

Rate of convergence

Corollary

Assume $f_0\neq f_1$ and that they belong to $C^s(\mathbb{R})$, the usual space of s-Hölder-continuous functions.

Assume Q is full-rank, irreducible and aperiodic.

Let $M_n \to +\infty$ arbitrarily slowly and let $k_n = \left(\frac{\log(n)}{n}\right)$ $\frac{s(n)}{n}\bigg)^{\frac{s}{2s+1}}$. There exists an estimator $\hat{\theta} = (\hat{\pi}, \hat{Q}, (\hat{f}_i)_{i=0,1})$ of θ and a sequence of random permutations $(\tau_n)_n$ of $\{0,1\}$ and $c, c' \geq 0$ such that:

$$
\mathcal{R}_{\theta^{\star},n}^{Online}(h_{\hat{\theta}^{\tau_n}}^{Online}) - \mathcal{R}_{\theta^{\star},n}^{\star,Online} \leq cM_n^3k_n
$$

$$
\mathcal{R}_{\theta^{\star},n}^{Office}(h_{\hat{\theta}^{\tau_n}}^{Office}) - \mathcal{R}_{\theta^{\star},n}^{\star,Office} \leq c'M_n^3k_n
$$

Two examples

Data are generated through the same transition matrix $\boldsymbol{Q}=$ $(0.8 \ 0.2)$ 0*.*3 0*.*7 \setminus .

- **First example:** A sample of size $n = 5.10^4$ is generated from two gaussian mixtures : $\frac{1}{2} \left(\mathcal{N}(1.7,0.2) + \mathcal{N}(7,0.15) \right)$ and 1 $\frac{1}{2}$ (N(3.5, 0.2) + N(5, 0.4)).
- **Second example:** A sample of size $n = 10^5$ is generated from two gaussian mixtures : $\frac{1}{2}$ $(\mathcal{N}(3,0.6) + \mathcal{N}(7,0.4))$ and 1 $\frac{1}{2}$ (N(5, 0.3) + N(9, 0.4)).

Purpose: Retrieve the sequence of hidden states using only the observations.

Example 1

Figure: Histograms of the clusters. Left: clustering using plug-in classifier. Right: K-means clustering

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

D.

Example 2

Figure: Histograms of the clusters. Left: clustering using plug-in classifier. Right: K-means clustering

 \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{AB} \rightarrow

€ □ E

э

Clustering errors

Table: Errors of clustering using 3 algorithms: the Bayes classifier (using the true model parameters), the plug-in classifier (using the estimated parameters) and the K-means algorithm.

イロト イ押ト イヨト イヨトー

э