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Clustering and Hidden Markov Models

Clustering

Clustering is an ill-posed problem which aims to find out interesting
structures in the data or to derive a useful grouping of the observations.
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Clustering and Hidden Markov Models

Applications of clustering

Recommender system in social network
Statistical data analysis
Anomaly detection
Image segmentation and object detection
...
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Clustering and Hidden Markov Models

Model-based clustering: Mixture models

Observations Y = (Yk)1≤k≤n coming from J populations.
Define latent variables X = (Xk)1≤k≤n such that: for each k,

Yk | Xk = j ∼ fj

Then Yk has distribution
J∑

j=1
πj fj

πj : Probability to come from population j

Useful to model data coming from heterogeneous populations.
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Clustering and Hidden Markov Models

Mixture models: Identifiability

Mixture models are not identifiable :
J∑

j=1
πj fj = π1

2 f1 +
(

π1
2 + π2

)( π1
2 f1 + π2f2

π1
2 + π2

)
+

J∑
j=3

πj fj

Learning of population components possible only under additional
structural assumptions such as:

Parametric mixtures
Shape restrictions (gaussian, multinomial, ...)

−→ Might lead to poor results in practice
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Clustering and Hidden Markov Models

Hidden Markov Models and why they are useful

Markov process : X0 X1 X2 · · · XT−1

Observations : Y0 Y1 Y2 · · · YT−1

Figure: A Hidden Markov Model.

Latent (unobserved) variables (Xk)k form a Markov chain.
Observations (Yk)k are independent conditionnally to (Xk)k .

HMMs are identifiable without any shape restriction!
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Inference in HMMs

Inference in Hidden Markov Models

The HMM parameters are:
The initial distribution ν.
The transition matrix Q.
The emission distributions F = (fi)1≤i≤J

Purpose: Estimate the model parameters and the hidden states associated
to the observations.
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Inference in HMMs

Inference in Hidden Markov Models

Many estimators have been studied in the HMM framework:
Kernel estimators
Wavelet estimators
Projection estimators

The associated optimal rates of convergence were derived.
Fundamental limits for learning these models were also identified.
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Clustering: Reconstructing the hidden states
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Clustering: Reconstructing the hidden states

Online vs offline clustering

We study the risk of clustering observations in two frameworks:
Offline: All observations are used in the clustering procedures.
Clustering rules are of the form: h(Y1:n) = (hi(Y1:n))1≤i≤n

Online: Clustering can use only past (and current) observations.
Clustering rules are of the form: h(Y1:n) = (hi(Y1:i))1≤i≤n

For the moment, we focus on the offline case .
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Clustering: Reconstructing the hidden states

Risk of clustering

Consider the loss function:

L1(x ′
1:n, x1:n) = inf

τ∈S

1
n

n∑
k=1

1x ′
k ̸=τ(xk)

The risk associated to a classifier h is:

Rcluster
n,HMM(h) = Eθ[L1(h(Y1:n), X1:n)] = Eθ

[
inf
τ∈S

1
n

n∑
i=1

1[h(Y1:n)]i ̸=τ(Xi )

]

The purpose is to exhibit bounds on the quantity:

R⋆,cluster
n,HMM = inf

h
Rcluster

n,HMM(h)
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Clustering: Reconstructing the hidden states

Upper bound

A straightforward upper-bound on the risk of clustering is:

R⋆,cluster
n,HMM ≤ inf

h
E
[

1
n

n∑
i=1

1[h(Y1:n)]i ̸=Xi

]
= R⋆,classif

n,HMM

where R⋆,classif
n,HMM = 1

n
∑n

i=1 Eθ⋆ [minx∈X P (Xi ̸= x | Y1:n)] corresponds to
the Bayes risk of classification of HMM observations.
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Clustering: Reconstructing the hidden states

Lower bound

Theorem

Assume δ = mini ,j Qi ,j > 0. Then, the risk of clustering and classification
ensure the following inequalities:

For iid observations:

R⋆,Offline
θ⋆,n (L1) −

√
log(J!)

2n ≤ R⋆,Offline
θ⋆,n (L2) ≤ R⋆,Offline

θ⋆,n (L1)

For HMM observations:

R⋆,Offline
θ⋆,n (L1) − 1

1 − ρ0

√
log(J!)

2n ≤ R⋆,Offline
θ⋆,n (L2) ≤ R⋆,Offline

θ⋆,n (L1)

where J is the number of classes, ρ0 = 1−Jδ
1−(J−1)δ .

Exactly similar inequalities hold for the risk of online clustering.
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Bounds on the Bayes risk of classification

Stationarized Bayes risk

Consider the following quantities:

R⋆,Offline
θ⋆,n (L1) = inf

h
ROffline

θ⋆,n (L1, h) = 1
n

n∑
i=1

Eθ⋆

[
min
x∈X

P (Xi ̸= x | Y1:n)
]

R⋆,Offline
θ⋆,stat (L1) = Eθ⋆

[
min
x∈X

Pθ⋆ (X0 ̸= x | Y−∞:+∞)
]

R⋆,Online
θ⋆,n (L1) = inf

h
ROnline

θ⋆,n (L1, h) = 1
n

n∑
i=1

Eθ⋆

[
min
x∈X

Pθ⋆ (Xi ̸= x | Y1:i)
]

R⋆,Online
θ⋆,stat (L1) = Eθ⋆

[
min
x∈X

Pθ⋆ (X0 ̸= x | Y−∞:0)
]

Ibrahim KADDOURI Clustering of Non-Parametric hidden Markov models observationsMay 27, 2024 16 / 29



Bounds on the Bayes risk of classification

Exponential forgetting

Proposition
Assume:

The initial distribution is the stationary distribution
The HMM model is comprised of two hidden states
δ = mini ,j Qi ,j > 0
ρ0 = 1−2δ

1−δ and ρ1 = 1 − 2δ

Then, for 0 ≤ j ′ ≤ j , k ≥ 0 and n ≥ 0:

∥Pθ(Xk ∈ . | Y−j:n) − Pθ(Xk ∈ . | Y−j′:n)∥TV ≤ 2ρk∧n+j′

0 ρk−k∧n
1

Similarly, for 0 ≤ k ≤ j ′ ≤ j and n ≥ 0 one has:

∥Pθ(Xk ∈ . | Y−n:j) − Pθ(Xk ∈ . | Y−n:j′)∥TV ≤ 2ρ−k+j′

0

Ibrahim KADDOURI Clustering of Non-Parametric hidden Markov models observationsMay 27, 2024 17 / 29



Bounds on the Bayes risk of classification

Exponential forgetting

Proposition
Assume:

The initial distribution is the stationary distribution
The HMM model is comprised of two hidden states
δ = mini ,j Qi ,j > 0
ρ0 = 1−2δ

1−δ and ρ1 = 1 − 2δ

Then, for 0 ≤ j ′ ≤ j , k ≥ 0 and n ≥ 0:

∥Pθ(Xk ∈ . | Y−j:n) − Pθ(Xk ∈ . | Y−j′:n)∥TV ≤ 2ρk∧n+j′

0 ρk−k∧n
1

Similarly, for 0 ≤ k ≤ j ′ ≤ j and n ≥ 0 one has:

∥Pθ(Xk ∈ . | Y−n:j) − Pθ(Xk ∈ . | Y−n:j′)∥TV ≤ 2ρ−k+j′

0

Ibrahim KADDOURI Clustering of Non-Parametric hidden Markov models observationsMay 27, 2024 17 / 29



Bounds on the Bayes risk of classification

Exponential forgetting

Proposition
Assume:

The initial distribution is the stationary distribution
The HMM model is comprised of two hidden states
δ = mini ,j Qi ,j > 0
ρ0 = 1−2δ

1−δ and ρ1 = 1 − 2δ

Then, for 0 ≤ j ′ ≤ j , k ≥ 0 and n ≥ 0:

∥Pθ(Xk ∈ . | Y−j:n) − Pθ(Xk ∈ . | Y−j′:n)∥TV ≤ 2ρk∧n+j′

0 ρk−k∧n
1

Similarly, for 0 ≤ k ≤ j ′ ≤ j and n ≥ 0 one has:

∥Pθ(Xk ∈ . | Y−n:j) − Pθ(Xk ∈ . | Y−n:j′)∥TV ≤ 2ρ−k+j′

0

Ibrahim KADDOURI Clustering of Non-Parametric hidden Markov models observationsMay 27, 2024 17 / 29



Bounds on the Bayes risk of classification

Stationarized Bayes risk

Theorem
Under the same assumptions:∣∣∣R⋆,Offline

n,HMM − R⋆,Offline
stat,HMM

∣∣∣ ≤ 2
n(1 − ρ0)∣∣∣R⋆,Online

n,HMM − R⋆,Online
stat,HMM

∣∣∣ ≤ ρ1
2n

1
1 − ρ0

where ρ0 = 1−2δ
1−δ , ρ1 = 1 − 2δ and δ = mini ,j Qi ,j > 0.
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Bounds on the Bayes risk of classification

Bounds on asymptotic Bayes risk

Theorem
Assume the initial distribution is the stationary distribution. where
δ = mini ,j Qi ,j > 0. One has:

δ

1 − δ
R⋆,Online

θ⋆,∞ ≤ R⋆,Offline
θ⋆,∞ ≤ R⋆,Online

θ⋆,∞

δ

∫
R

[f0 ∧ f1] (z)µ(dz) ≤ R⋆,Online
θ⋆,∞ ≤ (1 − δ)

∫
R

[f0 ∧ f1] (z)µ(dz)
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Bounds on the Bayes risk of classification

Appropriate Signal-to-Noise ratio

Corollary
Assume the initial distribution of the hidden states is the stationary
distribution of Q and in the case of multidimensional gaussian emission
distributions having the same covariance matrix Σ and means µ1 and µ2.
Let SNR = (µ0 − µ1)⊺Σ−1(µ0 − µ1):

δ

2 exp
(

−SNR
2

)
≤ R⋆,Online

θ⋆,∞ ≤ (1 − δ) exp
(

−SNR
8

)
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Plug-in Bayes classifier

Notations

(f0, f1) = Emission densities
θ = (ν, Q, (fx )x=0,1) true parameters
θ̂ = (ν̂, Q̂, (f̂x )x=0,1) estimators of the true parameters

Pθ(Xi ∈ . | Y1:n) smoothing distribution under true parameters θ

Pθ̂(Xi ∈ . | Y1:n) smoothing distribution under estimated parameters θ̂

hOffline
θ (Y1:n) = (1Pθ(Xi =1|Y1:n)>1/2)1≤i≤n Bayes classifier

hOffline
θ̂

(Y1:n) = (1Pθ̂(Xi =1|Y1:n)>1/2)1≤i≤n plug-in Bayes classifier

hOnline
θ (Y1:n) = (1Pθ(Xi =1|Y1:i )>1/2)1≤i≤n Bayes classifier

hOnline
θ̂

(Y1:n) = (1Pθ̂(Xi =1|Y1:i )>1/2)1≤i≤n plug-in Bayes classifier

Ibrahim KADDOURI Clustering of Non-Parametric hidden Markov models observationsMay 27, 2024 22 / 29



Plug-in Bayes classifier

Reconstruction algorithm

In practice θ is unknown. One rather uses an estimator θ̂ and the
algorithm yields:

ĥ(Y1:n) =
(

arg max
xk∈X

Pθ̂(Xk = xk | Y1:n)
)

1≤k≤n

Algorithm 1: MAP classifier algorithm
Assume X = {0, ..., r − 1}, θ = (ν, Q, F ) is given.;
Using the Forward-Backward algorithm, compute
Pθ(X1 = . | Y1:n), ..,Pθ(Xn = . | Y1:n).;

for k ∈ {1, .., n} do
xk = arg max0≤x≤r−1 Pθ(Xk = x | Y1:n)
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Plug-in Bayes classifier

Efficiency of plug-in empirical Bayes classifier

Theorem
Assume in addition that the emission densities f0 and f1 are lower-bounded
by c⋆ > 0. Let δ = mini ,j Qi ,j > 0 and ρ = 1−2δ

1−δ . Then:

ROnline
θ⋆,n (hOnline

θ̂
) − R⋆,Online

θ⋆,n ≤ 4(1 − δ)2

δ3 inf
τ∈S

Eθ⋆

[
1
n∥ντ − ν̂∥2

+ ∥Qτ − Q̂∥F + 1
c⋆

max
x=0,1

||fτ(x) − f̂x ||∞

]

ROffline
θ⋆,n (hOffline

θ̂
) − R⋆,Offline

θ⋆,n ≤ 4(1 − δ)
δ2 inf

τ∈S
Eθ⋆

[
1

n(1 − ρ)∥ντ − ν̂∥2

+
(
1/(1 − ρ) + 1/(1 − ρ̂)

)(
∥Qτ − Q̂∥F + 2

c⋆
max
x=0,1

||fτ(x) − f̂x ||∞
)]
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Plug-in Bayes classifier

Rate of convergence

Corollary
Assume f0 ̸= f1 and that they belong to C s(R), the usual space of
s-Hölder-continuous functions.
Assume Q is full-rank, irreducible and aperiodic.
Let Mn −→ +∞ arbitrarily slowly and let kn =

(
log(n)

n

) s
2s+1 .

There exists an estimator θ̂ =
(
π̂, Q̂, (f̂i)i=0,1

)
of θ and a sequence of

random permutations (τn)n of {0, 1} and c , c ′ ≥ 0 such that:

ROnline
θ⋆,n (hOnline

θ̂τn ) − R⋆,Online
θ⋆,n ≤ cM3

nkn

ROffline
θ⋆,n (hOffline

θ̂τn ) − R⋆,Offline
θ⋆,n ≤ c ′M3

nkn
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Simulations

Two examples

Data are generated through the same transition matrix Q =
(

0.8 0.2
0.3 0.7

)
.

First example: A sample of size n = 5.104 is generated from two
gaussian mixtures :1

2 (N (1.7, 0.2) + N (7, 0.15)) and
1
2 (N (3.5, 0.2) + N (5, 0.4)).
Second example: A sample of size n = 105 is generated from two
gaussian mixtures :1

2 (N (3, 0.6) + N (7, 0.4)) and
1
2 (N (5, 0.3) + N (9, 0.4)).

Purpose: Retrieve the sequence of hidden states using only the
observations.
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Simulations

Example 1

Figure: Histograms of the clusters. Left: clustering using plug-in classifier. Right:
K-means clustering
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Simulations

Example 2

Figure: Histograms of the clusters. Left: clustering using plug-in classifier. Right:
K-means clustering
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Simulations

Clustering errors

Bayes classifier Plug-in classifier K-means algorithm
Example 1 1.56% 1.61% 46.7%
Example 2 6.42% 6.51% 47.3%

Table: Errors of clustering using 3 algorithms: the Bayes classifier (using the true
model parameters), the plug-in classifier (using the estimated parameters) and
the K-means algorithm.
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